Rem is a new member of the Rad- and Gem/Kir Ras-related GTP-binding protein family repressed by lipopolysaccharide stimulation.
نویسندگان
چکیده
We report the cDNA cloning and characterization of a novel GTP-binding protein, termed Rem (for Rad and Gem-related), that was identified as a product of polymerase chain reaction amplification using oligonucleotide primers derived from conserved regions of the Rad, Gem, and Kir Ras subfamily. Alignment of the full-length open reading frame of mouse Rem revealed the encoded protein to be 47% identical to the Rad, Gem, and Kir proteins. The distinct structural features of the Rad, Gem, and Kir subfamily are maintained including a series of nonconservative amino acid substitutions at positions important for GTPase activity and a unique sequence motif thought to direct membrane association. Recombinant Rem binds GTP in a specific and saturable manner. Ribonuclease protection analysis found Rem to be expressed at comparatively high levels in cardiac muscle and at moderate levels in lung, skeletal muscle, and kidney. The administration of lipopolysaccharide to mice, a potent activator of the inflammatory and immune systems, results in the general repression of Rem mRNA levels in a dose- and time-dependent manner. Thus, Rem is the first Ras-related gene whose mRNA levels have been shown to be regulated by repression.
منابع مشابه
Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases.
Here we report the molecular cloning and biochemical characterization of Rem2 (for Rem, Rad and Gem-related 2), a novel GTP-binding protein identified on the basis of its homology with the Rem, Rad, Gem and Kir (RGK) family of Ras-related small GTP-binding proteins. Rem2 mRNA was detected in rat brain and kidney, making it the first member of the RGK family to be expressed at relatively high le...
متن کاملRoles of 14-3-3 and calmodulin binding in subcellular localization and function of the small G-protein Rem2.
kir/Gem, Rad, Rem and Rem2 comprise the RGK (Rad/Gem/kir) family of Ras-related small G-proteins. Two important functions of RGK proteins are the regulation of the VDCC (voltage-dependent Ca2+ channel) activity and cell-shape remodelling. RGK proteins interact with 14-3-3 and CaM (calmodulin), but their role on RGK protein function is poorly understood. In contrast with the other RGK family mem...
متن کامل14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity.
Individual members of the RGK family of Ras-related GTPases, which comprise Rad, Gem/Kir, Rem and Rem2, have been implicated in important functions such as the regulation of voltage-gated calcium channel activity and remodeling of cell shape. The GTPase Kir/Gem inhibits the activity of calcium channels by interacting with the beta-subunit and also regulates cytoskeleton dynamics by inhibiting t...
متن کاملExpression of Rem2, an RGK family small GTPase, reduces N-type calcium current without affecting channel surface density.
Rad, Gem/Kir, Rem, and Rem2 are members of the Ras-related RGK (Rad, Gem, and Kir) family of small GTP-binding proteins. Heterologous expression of RGK proteins interferes with de novo calcium channel assembly/trafficking and dramatically decreases the amplitude of currents arising from preexisting high-voltage-activated calcium channels. These effects probably result from the direct interactio...
متن کاملThe GTP binding proteins Gem and Rad are negative regulators of the Rho–Rho kinase pathway
The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 35 شماره
صفحات -
تاریخ انتشار 1997